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Abstract – The ordinary-, penalized-, and bootstrap t-test, least squares and best linear unbi-
ased prediction were compared for their false discovery rates (FDR), i.e. the fraction of falsely
discovered genes, which was empirically estimated in a duplicate of the data set. The bootstrap-
t-test yielded up to 80% lower FDRs than the alternative statistics, and its FDR was always
as good as or better than any of the alternatives. Generally, the predicted FDR from the boot-
strapped P-values agreed well with their empirical estimates, except when the number of mRNA
samples is smaller than 16. In a cancer data set, the bootstrap-t-test discovered 200 differentially
regulated genes at a FDR of 2.6%, and in a knock-out gene expression experiment 10 genes were
discovered at a FDR of 3.2%. It is argued that, in the case of microarray data, control of the FDR
takes sufficient account of the multiple testing, whilst being less stringent than Bonferoni-type
multiple testing corrections. Extensions of the bootstrap simulations to more complicated test-
statistics are discussed.

microarray data / gene expression / non-parametric bootstrapping / t-test / false discovery
rates

1. INTRODUCTION

DNA microarrays can measure the expressions of tens of thousands of genes
simultaneously, which provides us with a new, very powerful tool for the study
of gene regulatory and metabolic networks [2, 13]. Typically two treatments
are compared for the level of expression of many genes. Such data might tradi-
tionally be analyzed using one t-test for each gene. However, the large number
of tests makes the type I error rates large and hard to control [15]. Statistical
testing is further complicated by the small number of replicates within each
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treatment (1-20); and by gene-expression data not following a (Log-) Normal
distribution [14].

Because the number of genes on a microarray is often very large, and ev-
ery gene is tested for its treatment effect, statistical significance testing should
account for the large number of tests performed. Traditionally, multiple sta-
tistical tests are conducted while controlling the probability of making one or
more type I errors (e.g., the Bonferoni multiple testing correction). Benjamini
and Hochberg [1] and Tusher et al. [15] suggest the control of the false dis-
covery rate (FDR), i.e. the proportion of rejected null-hypotheses that are ac-
tually true. When some of the null-hypotheses are false, FDR control is less
strict than controlling the type I error probability. We will assume here that the
gene-expression experiment is conducted to point us to the genes affected by
the treatment, and that further research will sort out the details of this effect. In
this case, some erroneously rejected null-hypothesis can be accepted, as long
as there are not too many relative to the total number of detected genes. Hence,
controlling the FDR may be a reasonable strategy.

The non-Normality of gene-expression data hampers the ranking of the
gene-expression effects for their statistical significance, i.e. we do not know
which genes are most likely to have a real effect. Although, the t-test statistic
is optimal for Normally distributed data, Tusher et al. [15] found better rank-
ings using the penalized t-statistic:

tp =
m1 − m2

a +
√

s2
1/n1 + s2

2/n2

(1)

where mi (s2
i ) is the mean (variance) of the gene-expressions under the ith

treatment, and a is a constant which is added to avoid small s2
i values resulting

in large and thus apparently significant t-statistics. Lönnstedt and Speed [10]
and Efron et al. [5] used the 90th percentile of the standard errors of all the
genes, i.e., for 90% of the genes, a is larger than the usual denominator of

the t-statistic (
√

s2
1/n1 + s2

2/n2). Although, adding a to the denominator avoids
large t-statistics due to small (underestimated) standard errors, the statistical
justification for this addition is lacking, and hence the value of a is based on
heuristics and empirical evidence.

Kerr and Churchill [9] propose the use of linear models for the analysis
of appropriately transformed gene-expression data, either using Least Squares
(LS, [12]) with homogeneous or heterogeneous error variance (heterogeneous
error variance implies that a separate error variance is estimated for every
gene). Alternatively, they suggest the use of random effects models which
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use BLUP (best linear unbiased prediction) for the estimation of the gene-
expression effects. Another alternative is to use non-parametric bootstrapping
in order to account for any non-normality of the transformed gene-expression
data [8]. However, which of these methods is most appropriate for the analy-
sis of gene-expression data is not clear. The aim of this study is to compare
ordinary -, penalized -, and bootstrap t-tests, and LS and BLUP models with
homogeneous and heterogeneous error variance for their false discovery rates
of differentially expressed genes. The false discovery rates were empirically
assessed by finding the differentially expressed genes in a first data set, and
confirming their expression in a second data set. The methods were compared
in two publicly available data sets: the leukemia data of Golub et al. [6], and
the apoAI knockout mice data of Callow et al. [4].

2. METHODS

2.1. Leukemia data

The advantage of the leukemia data of Golub et al. [6] is that it actually
contains data from two replicated experiments contrasting gene expressions
in acute myeloid leukemias (AML) to those of acute lymphoblastic leukemia
(ALL). The two data sets are called TRAIN and INDEPEND. TRAIN is used
here to estimate and rank the gene-expression effects for their significance, and
INDEPEND is used for verifying the effect. The leukemia data are described
in detail by [6] and available at www.genome.wi.mit.edu.

The TRAIN data consisted of 38 bone marrow samples: 27 ALL and
11 AML samples. The INDEPEND data consisted of 17 AML and 17 ALL
samples. Light-intensities (foreground minus background), that were smaller
than 50, were considered not clearly above background, and were treated as
missing records. The deletion of low intensity records may have biased the
average expression of genes with extremely low expressions upwards, but this
bias is conservative in the sense that it reduces the difference in expressions
between AML and ALL, i.e. it reduces the false discovery rate. The records
were log-transformed before being analyzed.

2.2. ApoAI knockout mice data

The apoAI data are described in detail by Callow et al. [4] and are avail-
able at stat-www.berkeley.edu/users/terry/zarray/html/apodata.html. This data
consisted of 8 samples from knockout mice and 8 samples from control mice.
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In order to obtain again a test and a control data set, the data were arbitrar-
ily split into two sub sets called: DATA1 and DATA2. Each sub set consisted
of 4 of the knockout mouse arrays and 4 of the control mouse arrays. The
apoAI-knockout mouse data contained some light-intensities (foreground mi-
nus background) of 0 which were treated as missing records. Records were
log-transformed before being analyzed.

2.3. False discovery rates

The FDR of the, say, 200 most significant genes is predicted using [1]:

FDR(TNS) = min
i≥TNS

[
N ∗ P(i)

i

]
(2)

where N = the total number of genes in the analysis (N = 5284 and 6384 for
the leukemia data and apoAI data, respectively); TNS = total number of sig-
nificant genes (e.g. 200); P(i) = P-value of the ith most significant gene as es-
timated from normal distribution theory or the bootstrap-t-test. In equation (2),
N∗P(i) equals the expected number of false positives out of i-significant genes,
and the minimization over i ensures that FDR increases monotonically as TNS
increases.

In the case of the leukemia data, we used TRAIN to predict the FDR and IN-
DEPEND to verify this prediction. For this verification, an empirical estimate
of the FDR was obtained by counting how many of the significant effects fail
to be in the same direction when estimated in the INDEPEND set. Under the
null-hypothesis of no treatment effect, 50% of the INDEPEND estimates will
be in the opposite direction to those of the TRAIN data. Thus, an empirical
estimate of the false discovery rate is FDRe = 2 ∗ NOD/TNS, where NOD is
the number of significant effects in TRAIN that are in the Opposite Direction
in INDEPEND, and TNS is the total number of significant effects in TRAIN.
A more formal justification for the FDRe estimated is given in the Appendix,
together with a simulation study to test this empirical estimate of the FDR. A
second estimate of FDRe is obtained by swapping the two data sets, i.e. de-
termining significance in INDEPEND and checking the direction of the effect
in TRAIN. However, this second estimate of the FDRe is not independent of
the first, i.e. its information content is lower than that of an independent sec-
ond estimate. In the case of the apoAI data, TRAIN is replaced by DATA1 and
INDEPEND by DATA2.
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2.4. Methods of analyses

The t-test statistic is obtained by applying equation (1) and setting a = 0.
The penalized tp-test is also obtained from equation (1), with a equal to the
90th percentile of the standard errors of all the genes [5, 10]. For the Least
Squares (LS; [12]) analysis the model fitted was:

yi jk = µ +mi + g j + tk + (g ∗ t) jk + ei jk,

where yi jk = log-transformed light-intensity; µ = overall mean; mi = effect of
ith mRNA-sample; g j = effect of jth gene; tk = effect of kth treatment; and
(g ∗ t) jk = the gene-by-treatment effect. In the LS model, the error variance
was either estimated across all genes (homogeneous error variance) or esti-
mated within each gene (heterogeneous error variance). The test-statistic used
in the LS model was zi = ((g ∗ t)i1 − (g ∗ t)i2)/sei, where sei = standard error
of the estimate of ((g ∗ t)i1 − (g ∗ t)i2).

The BLUP model [7] equals the LS model except that the gene*treatment
effects are assumed random, i.e. they are assumed to be sampled from a dis-
tribution of effects with mean 0 and variance σ2

gti = σ
2
ei/λ where λ is the

usual BLUP variance ratio (error variance over gene-by-treatment variance),
σ2

ei = error variance, which was either assumed homogeneous (same for all
genes) or heterogeneous (different for each gene). The error variances, σ2

ei,
and the variance ratio, λ, which was assumed constant across all genes, were
estimated by residual maximum likelihood (REML; [11]). The test-statistic
for the BLUP model was also zi = ((g ∗ t)i1 − (g ∗ t)i2)/sei, but estimates of
((g ∗ t)i1 − (g ∗ t)i2) and sei differ from those of the LS model. Compared with
the LS model, BLUP will regress the (g ∗ t)ik effects back to zero when the
information on the (g ∗ t)ik effects is small.

The following steps were followed to calculate non-parametric bootstrap-t-
test P-values. For each gene with ni records:

1. Calculate t-statistic, treal, from the real data using the ordinary t-test;
2. sample, with replacement and without respecting the treatments, records

from the real data to form a bootstrap-simulated data set under the null-
hypothesis;

3. calculate the t-statistic from the bootstrap simulated data, i.e. under the
null-hypothesis;

4. repeat steps 2 and 3 Nboot times and calculate the bootstrap-P-value as:
Pboot = (count(|tk| > |treal |) + 1)/(Nboot + 1) where tk = t-statistic
of the kth bootstrap simulation out of a total of Nboot simulations, and
count(|tk | > |treal |) denotes the number of simulations in which tk is more
extreme than treal. Nboot was 100 000 simulations.
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Table I. The empirical false discovery rate (FDRe) when the 200 most significant
AML- versus ALL-effects in the TRAIN data were tested in the INDEPEND data,
and vice versa.

Method FDRe (%)
t-test 22
tp-test1 20
Bootstrap-t-test 4
LShom2 20
LShet2 15
BLUPhom3 15
BLUPhet3 9

1 The 90th-percentile was a = 0.346 in equation (1). 2 LShom (LShet) = Least squares analysis
with homogeneous (heterogeneous) error variance. 3 BLUPhom (BLUPhet) = Best linear unbi-
ased prediction of leukemia effects, i.e. leukemia effects are random effects, and error variance
was homogeneous (heterogeneous).

When the gene-by-treatment effects were ranked for their statistical signifi-
cance, they were ranked for this bootstrap-P-value. In the case of an ordinary
t-test the ranking on treal or on their corresponding P-value are the same, but
this is not the case for the bootstrap-t-test, where every gene has its own “table
of P-values” which comes from the bootstrap simulations.

3. RESULTS

3.1. The leukemia data

Empirical false discovery rates for the seven methods for finding differen-
tially expressed genes are shown in Table I. The bootstrap-t-test yielded the
lowest FDRe of 4%, i.e. only 8 out of the 200 genes are expected to be false
discoveries, which shows that the power of the experiment of Golub et al. [6]
was high. However, for the ordinary t-test and the tp-test, 44 and 40 out of the
200 genes are expected to be false discoveries, respectively. On average the
linear model based methods achieved somewhat better FDR than the t- and
tp-test. Correction for heterogeneity of error variances further improved their
FDR. The latter is expected since the distribution of the error variances cov-
ers a wide range of values and is skewed (Fig. 1), i.e. the variances are highly
heterogeneous.

The bootstrap-t-test also gave tables of P-values that account for the non-
normality in the data; 2545 genes had a nominal P-value below 0.01, and all the
200 most significant genes had a P-value of 1*10−5 indicating that, if we want
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Figure 1. Histogram of the error variances (in squared log light-intensity units) as esti-
mated by the least squares model with heterogeneity of error variances (only estimates
based on more than 30 records are included).

to distinguish between these genes, we needed more bootstrap samples. These
P-values resulted in a false discovery rate of FDR(200) = 2.6× 10−4 (Eq. (2)).
The empirical estimate of FDR (FDRe = 4%) is substantially higher than
this predicted estimate (FDR(200) = 2.6 × 10−4), which is probably because
the INDEPEND data is not a true replication of the TRAIN data. This was
described by Golub et al. [6] as: “INDEPEND contains a much broader range
of samples, including samples from peripheral blood rather than bone marrow,
from childhood AML patients, and from different reference laboratories that
used different sampling protocols”.

3.2. The apoAI knockout mice

Table II shows the empirical FDR for the apoAI knockout mice data. When
the 200 most significant effects were considered, FDRe approached 100% for
most methods, except for the Bootstrap-t-test for which about 1 out of every
3 significant genes was a false positive. This shows that all methods had little
power to detect the true effects in DATA1, which contains half of the data of the
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Table II. The empirical false discovery rate (FDRe, %) when the 200 and 8 most
significant apoAI-knockout effects in DATA1 were tested in DATA2, and vice versa.

No. of most significant effects
Method 200 8
t-test 91 38
tp-test1 83 38
Bootstrap-t-test 37 13
LShom2 76 25
LShet2 91 38
BLUPhom3 83 13
BLUPhet3 71 63

1 The 90th-percentile was a = 0.267 in equation (1). 2 LShom (LShet) = Least squares analysis
with homogeneous (heterogeneous) error variance. 3 BLUPhom (BLUPhet) = Best linear unbi-
ased prediction of apoAI-effects, i.e. apo-AI effects are random effects, and error variance was
homogeneous (heterogeneous).

experiment of Callow et al. [4], and in DATA2, which contains the other half.
However, these authors reported only eight significant genes. The Bootstrap-
t-test achieved 1 false discovery out of eight significant genes, while the other
methods had substantially higher FDRe, except for BLUP with homogeneous
error variance which achieved the same FDRe as Bootstrap-t in this case.

When the Bootstrap-t-test was used in the complete data of apoAI knockout
mice of Callow et al. [4], the eight most significant genes were the same genes
as those found significant by a normal quantile – quantile plot of the t-test
statistics [4]. These eight genes are also described in detail by [4]. Using the
bootstrap-t-test, 629 had a nominal P-value below 0.01, and the P-values and
FDR of the 11 most significant genes are given in Table III. The predicted false
discovery rate was low at FDR(8) = 2.4%. Also the 10 most significant genes
had a FDR well below 5% (FDR(10) = 3.2%). At a FDR below 5%, in addition
to the eight differentially regulated that were reported by [4], two more genes
were found differentially regulated: Incenp (accession no. W13505) was up-
regulated, and Serpinf1 (accession no. AA691483) was down-regulated.

The two subsets of the apoAI data, DATA1 and DATA2, contained only
4 control and 4 knockout expressions per gene. In these small data sets, the
bootstrap predictions of P-values and thus of FDR for the, say 8, most highly
significant genes should be overestimated because the tails of the distribution
of the data are imprecisely estimated due to the small sample size (see Discus-
sion section). When more genes are considered, e.g. the 200 most significant
genes, FDR(200) is 26 and 28% for DATA1 and DATA2, respectively, which is
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Table III. Predicted false discovery rates and nominal P-values using bootstrapping
for different numbers of significant genes in the complete apoAI-knockout data of [3].

No. of most significant genes FDR(%) Nominal-P (%)
1 1.6 0.001
2 1.6 0.001
4 1.6 0.001
8 2.4 0.003
10 3.2 0.005
11 5.4 0.010

somewhat lower than the empirical estimate of 37% (Tab. II). As in the TRAIN
data, the predicted FDR is somewhat optimistic, but in the same order of mag-
nitude as the empirical estimate of the FDR.

4. DISCUSSION

Seven alternative methods for the analysis of gene expression data were
compared for their empirical false discovery rates of differentially expressed
genes. The bootstrap-t-test yielded an up to 80% lower FDR than the alterna-
tive tests, and was in all comparisons as good as or superior to the best of the al-
ternatives. The improved ranking for significance by the bootstrap-t-test is due
to the non-normality of the log-transformed light intensities, whose distribu-
tion is better approximated by the bootstrap simulations than by a log-normal
distribution. It is expected that as the number of micro-arrays per experiment
increases due to improved and cheaper micro-array technology, the increased
number of data points will further improve the approximation of the distribu-
tion of the data by bootstrap simulations, and thus will improve the rankings
based on the bootstrap-t-test.

The linear models (LS and BLUP) generally gave lower FDRe than the or-
dinary and penalized t-test. In the case of Table I, correction for heterogene-
ity of variance was superior to assuming homogeneous variances. In the case
of Table II, correction for heterogeneity of variance did not seem to improve
FDRe, possibly because of the small sizes of DATA1 and DATA2 which results
in poor estimates of the variances of the individual genes. In general, the linear
models are more flexible than the t-tests for analyzing microarray data in that
they can analyze data where many factors are affecting the records [9]. In situa-
tions where many factors are affecting the records, it is therefore worthwhile to
device bootstrapping methods that use linear models and their corresponding
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F-tests instead of t-tests. However, the general idea of the bootstrap simula-
tions will remain the same namely:

1. Randomly sample with replacement treatment identifiers to the records;
2. calculate the F-statistic or other statistic;
3. repeat steps 1 and 2 to make a bootstrap-P-table of the F-statistic from

which the P-value of the real data F-statistic can be found.

From the bootstrap simulations, the FDR could be predicted using equa-
tion (2) in any one experiment. If the size of the experiment is sufficiently large
to approximate the distribution of the data even within its tails, these predicted
FDR were too low in the publicly available data that were used here, i.e. they
were too optimistic about the true FDR. In small data sets, such as DATA1 and
DATA2, the predicted FDR of the most significant gene-by-treatment effects
are expected to be substantially overestimated as shown in the next paragraph.

As an example, suppose a gene has 4 log-light intensity records of {1, 2, 3,
4} for treatment 1, and 4 for treatment 2: {11, 12, 13, 14}. These data show
an extremely significant treatment effect: P-value of the two-sided t-test is
3.4×10−5. However, the P-value of the bootstrap-t-test is only 6×10−3. When
sampling with replacement from the forementioned data, it is relatively likely
to sample an even more significant data set by: (1) sampling with replace-
ment the first 4 records out of the set {1, 2, 3, 4} and the second 4 records out
of the set {11, 12, 13, 14} (probability is 1/28 = 0.004); (2) sampling dupli-
cated records in such a way that the t-statistic becomes even more extreme
than that of the original data (probability is approximately 1/2). Hence, the
expected P-value of the bootstrap-t-test is approximately 0.004*1/2*2, where
the factor 2 is due to the two-sided testing. Note that this P-value is rather
insensitive to the actual treatment effect, i.e. the data set {1, 2, 3, 4, 21, 22,
23, 24} gives the same P-value. This upward bias of P-values of highly signif-
icant gene*treatment effects disappears quickly when we have more records,
e.g. with eight records per treatment the minimum bootstrap-t-test P-value is
approximately: 1/216 = 1.5 × 10−5. Hence, the bootstrap-t-test needs at least
16 records per gene in order to avoid a severely upwards bias in the P-values
of the most significant genes, and thus a too high predicted FDR for the most
significant effects.

Hence, a small number of records makes the approximation of the distribu-
tion of the data too poor in the tails to make predictions about the P-values
of highly significant genes. If the smallest bootstrap-P-values are close to the
minimum possible P-value, Pmin, an upward bias of these P-values is expected,
where:

Pmin =

(n1

N

)n1
(n2

N

)n2
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with n1 (n2) = number of records in treatment 1 (2), and N is total number of
records per gene. Also, the number of bootstrap simulations should be large
enough to be able to estimate low P-values, i.e. the number of bootstrap simu-
lations should preferably exceed 100/P.

An alternative non-parametric approach to assess the FDR is the permuta-
tion of the data, as for instance used in significance analysis of microarrays
(SAM; [15]). Random permutations of the data are obtained by sampling from
the data without replacement (instead of with replacement as in bootstrap-
ping). Obviously, if there are sufficiently many records per gene, sampling
with or without replacement gives very similar results. However, if there are
few records per gene, there are only few possible permutations of the data,

e.g. in DATA1 there are

(
8
4

)
= 70 possible permutations which makes that

the smallest possible P-value is 0.014 (i.e. significance at the 1% level is not
possible). SAM overcomes this problem of few possible permutations by deter-
mining the P-values (and thus FDR) across all genes, but this has the drawback
that all genes have to be ranked on the same test-statistic, in the case of SAM:
the tp-statistic (1). Thus although SAM gives an improved estimate of the true
FDR, its FDR is the same as that of the tp-test.

Benjamini and Hochberg [1] show that equation (2) controls the FDR when
the P(i)-values are independent. Benjamini and Yekutieli [2] show that this
is also the case for positively dependent P(i)-values. Measurement errors of
light-intensities tend to be positively correlated, e.g. spatial effects that are not
corrected for can increase all light-intensities in a region. Biological effects
may lead to negative correlations between gene expression levels, however
this will also result in positive correlations between the P(i)-values because
double-sided test-statistics are used here (i.e. both down- and up-regulated
genes have low P(i)-values). In situations where strong negative correlations
between the P(i)-values are expected, resampling techniques can be used to
adjust the FDRs [16]. The empirical estimate of FDR (FDRe) is not expected
to be biased by correlations between the genes, but its standard error will be
increased. However, if the two data sets that are used to calculate FDRe are not
independent, FDRe can be severely biased.

With a FDR of 2.6%, 200 genes were found up/down regulated when com-
paring AML to ALL samples. Golub et al. [6] used 50 genes to distinguish
the two cancer types, which seems a conservative number given the results in
Table I. A list of the 200 genes most affected by the cancer types is available
from the authors. In the apoAI data, the bootstrap-t-test indicated that at least
two more cDNA’s, Incenp and Serpinf1, were affected by the apoAI knockout
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(at an FDR < 5%), where Incenp was up-regulated while all other significant
genes were down regulated. Incenp and Serpinf1 were not discovered by the
t-test at an adjusted P-value < 20% [4], which shows that the bootstrap-t-test
increases the power of detecting differentially regulated genes substantially.

In conclusion, non-parametric bootstrapping of gene expression data sub-
stantially improved the detection of differentially expressed genes compared
to the alternative methods in two publicly available data sets. Since the results
are only based on two data sets, more investigations are needed to confirm
these results, but the differences in FDR were so large that we expect these
results to hold also in other data sets. Furthermore, an empirical estimate of
the FDR, FDRe, was developed and tested in Monte Carlo simulations. This
FDRe can be used to compare current and future micro-array analysis methods
for their FDR.
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APPENDIX: AN EMPIRICAL ESTIMATE OF THE FALSE
DISCOVERY RATE (FDR)

We assume that we have two data sets in which the effect of the same two
treatments on gene-expression levels is investigated. Typically two such data
sets are obtained by splitting the microarrays of a larger experiment, at ran-
dom, in two approximately equally sized sets of microarrays. The data sets are
called DATA1 and DATA2. We analyse both data sets with the data analysis
method, of which we want to estimate the FDR. This results in an estimate of
the difference between the two treatments, b1 and b2, for DATA1 and DATA2,
respectively. Let btrue denote the true difference between the treatments. Our
method of analysis also results in a statistic that is used to determine the statis-
tical significance of the treatment. This statistic is called t1 and t2 for DATA1
and DATA2, respectively, and the treatment is called significant for DATA1 if
t1 exceeds some critical value tα.

Now let us consider the genes where the analysis of DATA1 results in a
significant treatment effect. Some of these genes may be false positives, i.e.
H0 is true: the treatment has no effect on the expression level. The alternative
hypothesis is Ha: treatment does affect the expression level. If a gene was
found significant in DATA1 and Ha is true we expect that the gene will show
a similar effect in DATA2. Moreover, if the effect of a significant gene has the
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opposite effect in DATA2 compared with DATA1, i.e. Sign(b1) � Sign(b2), we
start to doubt that Ha is true for this gene. Hence, we start to believe that this
gene is a false positive. The probability that Sign(b1) � Sign(b2) given that
DATA1 gave a significant treatment effect is:

P(Sign(b1) � Sign(b2)|t1 > tα)

= P(Sign(b1) � Sign(b2)|t1 > tα,H0) ∗ P(H0|t1 > tα)

+ P(Sign(b1) � Sign(b2)|t1 > tα,Ha) ∗ P(Ha|t1 > tα)

= P(Sign(b1) � Sign(b2)|H0) ∗ P(H0|t1 > tα)

+ P(Sign(b1) � Sign(b2)|Ha) ∗ P(Ha|t1 > tα)

= 1/2 ∗ P(H0|t1 > tα) + P(Sign(b1) � Sign(b2)|Ha) ∗ P(Ha|t1 > tα)

≈ 1/2 ∗ P(H0|t1 > tα) (A.1)

The one-but-last equality in (A.1) assumes that P(Sign(b1) � Sign(b2)|H0) =
1/2, which is the case if the estimates of the difference between the treatments,
b1 and b2, are independent and have a symmetric distribution around zero un-
der H0 (and that b1 = 0 (or b2 = 0) has an infinitesimal probability which
is the case for any variable with a continuous distribution). The last approxi-
mation in (A.1) is based on the assumption that P(Sign(b1) � Sign(b2)|Ha) is
small. Note that P(Sign(b1) = Sign(btrue)|Ha) is very high, since the probabil-
ity that the estimate b1 was in the wrong direction and significantly different
from zero is small (smaller than the type-I-error rate). Hence, P(Sign(b1) �
Sign(b2)|Ha) ≈ P(Sign(btrue) � Sign(b2)|Ha) is assumed small, and the latter
will generally be the case when the experiment has reasonable power.

Note that, in (A.1), P(H0|t1 > tα) equals the false discovery rate, and thus
an empirical estimate of P(H0|t1 > tα) can be obtained from:

FDRe = 2 ∗ P(Sign(b1) � Sign(b2)|t1 > tα).

From the above derivation it is also clear that FDRe overestimates the FDR
when P(Sign(b1) � Sign(b2)|Ha) is not negligible, i.e. when the power of the
experiment is small. The performance of FDRe as an estimate of the FDR was
tested in a simulation study. Even when the power of the experiment was as
low as 9%, FDRe overestimated the true FDR by only 5.8%-points (Tab. A.I).
When the size of the experiment was doubled or quadrupled, the overestima-
tion reduced to 2.5 or 0.2%-points, respectively. Hence, FDRe yields a very
good estimate of FDR in reasonably large experiments, and yields a conser-
vative estimate (i.e. an over-estimate) of the true FDR in small experiments.
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Table A.I. True and estimated false discovery rates (FDR) and the power of the experi-
ment when the size of the experiment, denoted by the number of microarray-slides (n),
is varied. Each slide shows the difference between a treatment and a control.

n FDRtrue FDRe Power

5 0.479 0.537 0.094

10 0.162 0.187 0.166

15 0.044 0.046 0.439

There are two data sets (DATA1 and DATA2) each with n slides. Each slide contains
100 000 genes, such that reliable estimates of FDRtrue and FDRe are obtained. The log light-
intensity of each gene in each treatment at each slide is simulated as the sum of a treatment
effect and a measurement error which is sampled from N(0, 1). The treatment effect is 0 for the
control treatment and for 90% of the genes that show no treatment effect. The treatment effect
is 1 for 10% of the genes. The statistical significance of the treatment was tested by a t-test at a
type-I-error rate of 0.01.
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